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Abstract

A wide range of phenomena that evolve over time can be modeled and analyzed using both continuous and discrete-time systems.
Choosing the appropriate type of system depends on the nature of the problem being studied and its constraints. For any engineer
or scientist working on the design of dynamical systems, a thorough understanding of both types of systems is essential. In this
paper explain some differences between the stability criteria in continuous linear systems and discrete linear systems. First, we
explain which criteria have versions for both Hurwitz and Schur polynomials. Then, we present some criteria that are similar
but not exactly the same version, and finally, we illustrate the differences with an important result that holds for Hurwitz
polynomials but not for Schur polynomials.
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1 Introduction

The concept of stability in differential equations has been defined in many different ways, depending on whether the
time is continuous or discrete, we have Hurwitz-type stability and Schur-type stability, respectively. One way to
study the stability of a linear system is by analyzing the roots of the associated characteristic polynomial. In the case
of continuous time, for the system to be stable, it is required that all roots are located in the left half of the complex
plane; while for discrete time, it is required that the roots are located inside the circumference of radius one of the
complex plane. There are a large number of results that allow us to determine the stability from the coefficients of
the characteristic polynomial, without explicitly calculating the roots. A seminal reference that presents the study of
Hurwitz stability is [1]. The criteria to be presented here are extensively analyzed in [2]. For the case of Hurwitz-type
stability, the main criteria can be consulted in [3]. Other important references on details and applications of these
criteria can be consulted in [4] and [5].

In this paper, we present those criteria that are applicable to both continuous time systems and discrete time
systems, highlighting the slight differences in the statements of the criteria for both cases. However, there exist
results that are not valid for both cases; for example, the Kharitonov theorem is valid for Hurwitz polynomials, but it
is not valid for Schur polynomials. The difference of this paper compared to previous works is that in other works,
such as [6] where the criteria for both cases of Hurwitz polynomials and Schur polynomials are presented, without
marking the similarities and also do not mention that there are results that can occur in one case and not in the other.
In the present paper, we first present criteria that have a version in both cases, that is, they have a version for both
Hurwitz polynomials and Schur polynomials, such as the Phase Theorem and the Hermite-Biehler Theorem. Then,
we present criteria that are not exactly the same version in both cases, but they are very similar criteria, such as the
Routh-Hurwitz criterion for Hurwitz polynomials and the Schur-Cohn criterion for Schur polynomials. Finally, to
illustrate the differences, we present the famous Kharitonov Theorem, which is valid for Hurwitz polynomials but
not for Schur polynomials.

2 Background concepts about Hurwitz and Schur polynomials

Definition 2.1 (Hurwtiz-type stability). A polynomial p(s) = ansn + an−1sn−1 + · · ·+ a0 ∈ C[s] is called Hurwitz-type,
Hurwitz-stable or Hurwitz, if si ∈ C− = {a + ib : a < 0}, for all root si of p.

*Corresponding: bahe@xanum.uam.mx
Received: September 14, 2025, Published: December 17, 2025

12

mailto:bahe@xanum.uam.mx


Aguirre-Hernández, et al./ Journal of Dynamical Systems and Complexity (2025) 1(1), 12-19

If the roots si are purely imaginary, we will say that p(s) is critically stable. The following simple example
illustrates the previous concepts.

Example 1. The polynomial r(s) = s2 + (2 + 2i)s + (1 + 2i) has the roots: r(s) = (s + 1 + 2i)(s + 1), s = −1 − 2i
and s = −1, therefore is a Hurwitz-stable polynomial. Whereas the polynomial f (s) = s2 + (−3 + i)s − (−2 + i) is
neither Hurwitz nor critically stable, since its roots are: s = 2 − i and s = 1.

Definition 2.2 (Schur-type stability). A polynomial q(z) = anzn + an−1zn−1 + · · · + a0 ∈ C[z] is called Schur-type,
Schur-stable or Schur, if zi ∈ D = {z ∈ C : |z| < 1}, for all root zi of q.

If the modulus of its roots, zi, is the unit, we say that the polynomial q(z) is critically stable. We will say that the
polynomials p(s) and q(z) are unstable, if they are neither stable nor critically stable.

Example 2. The polynomial g(z) = z2 + (− 1
2 + 1

4 i)z − 1
8 i is Schur-stable because g(z) = (z − 1

2 )(z +
1
4 i), and its roots

are: 1
2 and − 1

4 i. Whereas the polynomial h(z) = z2 + (−1 + 1√
2
+ 1√

2
i)z − ( 1√

2
+ 1√

2
i) is not Schur-stable since

h(z) = (z − 1)(z + 1√
2
+ 1√

2
i), and its roots are z = 1 and z = −z=− 1√

2
− 1√

2
i. However, if it is critically stable.

These definitions of stability of polynomials p(s) and q(z) seems to require the computation of the roots, however
this is not really necessary since it is sufficient to apply some test that verifies the stability condition.

Let be p(s) a complex coefficient polynomial and consider p(iω), ω ∈ R, then the polynomial p(iω) = α(ω) + iβ(ω)
determines a curve on the complex plane:

p : R −→ C

ω 7→ α(ω) + iβ(ω).
(1)

Definition 2.3. We call the argument of p(iω), denoted by arg(p(iω)), the phase of p(iω).

Definition 2.4. Let be q(z) a complex coefficients polynomial, consider q(eiθ), θ ∈ [0, 2π), then the polynomial q(eiθ) =
α(θ) + iβ(θ) determines a curve on the complex plane:

q : [0, 2π) −→ C

θ 7→ α(θ) + iβ(θ).
(2)

Definition 2.5. We call the argument of q(eiθ), denoted by arg q(eiθ), the phase of q(eiθ) (see [7]).

3 Equivalent theorems for Hurwitz and Schur polynomials

3.1 The Theorem of the Phase

Theorem 3.1 (see [2]). If p(s) ∈ C[s] is a Hurwitz polynomial with complex coefficients of degree n ≥ 1, then d
dω arg p(iω) > 0

for all ω ∈ R.

Figure 1: Phase increase illustration for polynomial p(s) = (s + 2)2(s + 1)(s + 1 − i). In blue the plot of p(iω), red line arg p(iω0)
and green line arg p(iω1), with arg p(iω0) < arg p(iω1).
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Figure 2: Phase increase illustration for polynomial q(s) = (s + 1
2 + 1

2 i)(s + 1
4 − 1

2 i). In blue the plot of p(iω), red line arg p(iω0)
and green line arg p(iω1), with arg p(iω0) < arg p(iω1).

Theorem 3.2 (see [2]). If q(z) ∈ C[z] is a non-constant Schur polynomial, then d
dθ arg q(eiθ) > 0 for all θ ∈ [0, 2π).

The following theorem, together with its discrete analogue, shows how the number of roots of a polynomial
situated in the left half-plane, respectively on the unit circle, can be determined by modifying the argument of the
polynomial along its stability boundary.

Theorem 3.3. Let be p(s) ∈ C[s] an n degree polynomial without zeroes on the imaginary axis. Then,

∆∞
−∞ arg p(iω) = (n − 2v)π, (3)

where ∆∞
−∞ arg p(iω) is the net increase of arg p(iω) from −∞ to ∞, and v is the number of zeros of p(s) in the right open

half-plane, taking into account its multiplicities. In particular, p(s) is Hurwitz-stable if and only if

∆∞
−∞ arg p(iω) = nπ. (4)

Proof. The proof of the necessary condition is based in ideas of [8] and [2], but we provide a more detailed proof so
that it can be better understood. According to the fundamental theorem of algebra we have

p(t) = an(t − a1 − ib1)(t − a2 − ib2) · · · (t − anibn), (5)

then
p(iω) = an[−a1 + i(ω − b1)][−a2 + i(ω − b2)] · · · [−an + i(ω − bn)]. (6)

Next, we calculate the phase of p(iω)

arg p(iω) = arg(an) + arg[−a1 + i(ω − b1)] + . . . + arg[−an + i(ω − bn)]

= arg(an) + arctan
(

ω − b1

−a1

)
+ . . . + arctan

(
ω − bn

−an

)
. (7)

Subsequently, we derive

d
dω

[arg p(iω)] =
1

1 +
(

ω − b1

−a1

)2

(
− 1

a1

)
+ . . . +

1

1 +
(

ω − bn

−an

)2

(
− 1

an

)
, (8)

for all k = 1, . . . , n it holds that ak < 0, since ak + ibk is a root of the Hurwitz polynomial p(t). Therefore arg p(iω) is
an increasing function of ω. Now we evaluate the limits

lim
ω→+∞

arg p(iω) = arg(an) +
π

2
+ . . . +

π

2
= arg(an) +

nπ

2
(9)

lim
ω→−∞

arg p(iω) = arg(an)−
π

2
− . . . − π

2
= arg(an)−

nπ

2
. (10)

Thus
arg[p(+i∞)]− arg[p(−i∞)] = nπ. (11)

The proof of the sufficiency can be found at [8].
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Figure 3: Argument illustration for polynomial g(iω). The plot of g(iω) in blue, red line is arg g(iω0) > π/2 and yellow line is
arg g(iω1) < 7π/2. The argument has completed a full turn around the origin when the red line increases until it reaches the
yellow line.

Example 3. Consider the polynomial

g(t) = t3 + (3 − i)t2 + (3 − 2i)t + (1 − i) (12)

then

g(iω) = (iω)3 + (3 − i)(iω)2 + (3 − 2i)(iω) + (1 − i) (13)

= −3ω2 + 2ω + 1 + i(−ω3 + ω2 + 3ω − 1)

⇒ arg g(iω) = arctan
(
−ω3 + ω2 + 3ω − 1
−3ω2 + 2ω + 1

)
(14)

Some observations:

• lim
ω→−∞

g(iω) =
π

2
, we need to start with the branch of arctan having the image (π

2 , 3π
2 ).

• When the graph crosses the imaginary axis at the top, it has already passed around the origin, and the angle is
5π
2 .

• If lim
ω→∞

g(iω) =
7π

2
. Therefore ∆∞

−∞ arg g(iω) =
7π

2
− π

2
=

6π

2
= 3π, thus g(s) is Hurwitz.

Theorem 3.4. Let be q(z) ∈ C[z] an n degree polynomial, without roots on the unitary circle δD, then

∆2π
0 arg q(eiθ) = (n − v)2π, (15)

where ∆2π
0 arg q(eiθ) is the net increase of arg q(eiθ) from 0 to 2π, and v is the number of roots of q(z) outside q(z), taking into

account its multiplicities. In particular, q(z) is Schur-stable if and only if

∆2π
0 arg q(eiθ) = n2π. (16)

Proof. See [2].

In the context of geometry, a polynomial is considered Schur-stable if and only if the frequency diagram, defined
as the function q(eiθ) for all values of the variable θ ∈ [0, 2π], describes a curve that encircles the origin n times in a
counterclockwise direction.

Example 4. Consider the polynomial

h(z) = z3 + (−1
2
+ i

1
2
)z2 + (−1

4
+ i

1
2
)z + (

1
8
+ i

1
8
) (17)

Analyzing the frequency plot: θ → h(eiθ), for θ ∈ [0, 2π], we have

h(eiθ) = cos 3θ − 1
2 cos 2θ − 1

2 sin 2θ − 1
2 sin θ − 1

4 cos θ + 1
8

+i
(

sin 3θ − 1
2 sin 2θ + 1

2 cos 2θ + 1
2 cos θ − 1

4 sin θ + 1
8

)
. (18)
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3.2 Hermite-Biehler Theorem

A real polynomial P(z) of even degree satisfies the alternating property if

• p2m and p2m−1 have the same sign.
• All roots of Pp(ω) and Pim(ω) are real, distinct, and furthermore the m positive roots of Pp(ω) and the m − 1

positive roots of Pim(ω) are alternating, i.e:

0 < ωe,1 < ωo,1 < · · · < ωe,m−1 < ωo,m−1 < ωe,m. (19)

A similar definition is given for P(z) odd.

Theorem 3.5 (Hermite-Biehler Theorem: Hurwitz case). A real polynomial P(z) is Hurwitz if and only if it satisfies the
alternating property.

Proof. The proof of previous theorem can be consulted in [9].

Now, consider a real polynomial of n-degree

P(z) = pnzn + pn−1zn−1 + · · ·+ p2z2 + p1z + p0. (20)

We define the following polynomials for P(z) :

Ps(z) = 1
2

[
P(z) + znP

(
1
z

)]
. (21)

Pa(z) = 1
2

[
P(z)− znP

(
1
z

)]
. (22)

Theorem 3.6 (Hermite-Biehler Theorem: Schur case). A real polynomial P(z) is Schur, if and only if Ps(z) y Pa(z) satisfies
the following

• Ps(z) and Pa(z) are polynomials of degree n with main coefficients of the same sign.
• Ps(z) and Pa(z) have only single zeros, which are located on the unit circle.
• On the unit circle, the zeros of tPs(z) and Pa(z) alternate.

Proof. See [8].

4 Similar Criteria

In this section, we present some results relating to the study of root distribution for real and complex polynomials of
continuous and discrete systems, respectively.

4.1 Routh-Hurwitz criterion

Consider the n degree real polynomial in s:

p(s) = a0sn + a1sn−1 + · · ·+ an, (23)

with a0 ̸= 0. The matrix

H(p) =


a1 a3 a5 · · · 0
a0 a2 a4 · · · 0
0 a1 a3 · · · 0
...

...
...

. . .
...

0 0 0 · · · an

 (24)

is called the Hurwitz matrix of p. We now state the Routh-Hurwitz criterion, which provides necessary and sufficient
conditions for determining whether a real polynomial is Hurwitz.
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Theorem 4.1 (Routh-Hurwitz criterion). Let

p(s) = a0sn + a1sn−1 + · · ·+ an, (25)

an n-fixed degree polynomial, with a0 > 0. Then p(s) is Hurwitz if, and only if

a0∆1 > 0, ∆2 > 0, a0∆3 > 0, ∆4 > 0, . . . ,
{

a0∆n > 0, if n is odd
∆n > 0, if n is even

(26)

where ∆i are the principal minors of H(p), i.e.

∆1 = det(a1), ∆2 = det
(

a1 a3
a0 a2

)
, ∆3 = det

 a1 a3 a5
a0 a2 a4
0 a1 a3

 , . . . (27)

4.2 Schur-Cohn criterion

For complex polynomials, we have Schur-Cohn criterion as the counterpart to the real case. This criterion is expressed
in terms of determinants, almost in the same way as the Routh-Hurwitz criterion.

Consider the n degree complex polynomial in z:

p(z) = anzn + an−1zn−1 + · · ·+ a0. (28)

Consider the following determinants associated with the polynomial (28):

∆k =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a0 0 0 · · · 0 an an−1 · · · an−k+1
a1 a0 0 · · · 0 0 an · · · an−k+2
· · · · · · · · ·
· · · · · · · · ·
· · · · · · · · ·

ak−1 ak−2 ak−3 · · · 0 0 0 · · · an
an 0 0 · · · 0 a0 a1 · · · ak−1

an−1 an 0 · · · 0 0 a0 · · · ak−2
· · · · · · · · ·
· · · · · · · · ·
· · · · · · · · ·

an−k+1 an−k+2 an−k+3 · · · an 0 0 · · · a0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(29)

where k = 1, 2, . . . , n and āi denotes conjugate.

Theorem 4.2 (Schur-Cohn criterion). If ∆k in (28) is non zero, for all k, then p(z) has no zeros on the unit circle and the
number of roots inside the circle equals the number of sign changes in the sequence of determinants ∆1, ∆2, . . ., ∆n.

5 Main results: differences in interval families

In this section we present the Kharitonov theorem, which is valid for Hurwitz polynomials and we give three coun-
terexamples for illustrating that this theorem is not valid for Schur polynomials. We have found the counterexamples
for degree equal 2 and 3. The counterexample for degree 4 is due to [8].

5.1 Kharitonov’s theorem

Consider the following family of polynomials

p(s, q) =
n

∑
i=0

[q−i , q+i ]s
i (30)

where [q−i , q+i ] denote the i-th component close interval. We can describe p(s, q) as an interval polynomial. Associated
with the interval polynomial p(s, q) = ∑n

i=0[q
−
i , q+i ]s

i we define the four Kharitonov polynomials:

K1(s) = q−0 + q−1 s + q+2 s2 + q+3 s3 + q−4 s4 + q−5 s5 + q+6 s6 + · · ·
K2(s) = q+0 + q+1 s + q−2 s2 + q−3 s3 + q+4 s4 + q+5 s5 + q−6 s6 + · · ·
K3(s) = q+0 + q−1 s + q−2 s2 + q+3 s3 + q+4 s4 + q−5 s5 + q−6 s6 + · · ·
K4(s) = q−0 + q+1 s + q+2 s2 + q−3 s3 + q−4 s4 + q+5 s5 + q+6 s6 + · · · .

(31)
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Theorem 5.1 (see [10]). An interval polynomial family P with invariant degree is Hurwitz if and only if all four Kharitonov
polynomials are Hurwitz.

Proof. The proof can be consulted in [8] and [10]. The theorem of Kharitonov is not valid for the polynomials of
Schur [8].

5.2 Counterexamples for the Schur stability of interval families

Example 5. Consider the following interval polynomial:

F(z, q0, q1, q2) =

[
1

10
,

1
4

]
+

[
3
5

, 1
]

z +
[

9
10

, 1
]

z2 (32)

that is F(z, q0, q1, q2) = q0 + q1z + q2z2 with q0 ∈ [1/10, 1/4], q1 ∈ [3/5, 1] and q2 ∈ [9/10, 1]. Here, the Kharitonov’s
polynomials and respective roots are:

K1(z) =
1

10
+

3
5

z + z2; z1 = − 3
10

+
3

10
i, z2 = − 3

10
− 3

10
i

K2(z) =
1

10
+ z + z2; z1 = 1

10

(
−
√

15 − 5
)

, z2 = 1
10

(√
15 − 5

)
K3(z) =

1
4
+

3
5

z +
9

10
z2; z1 = 1

6

(
−2 + i

√
6
)

, z2 = 1
6

(
−2 − i

√
6
)

K4(z) =
1
4
+ z +

9
10

z2; z1 = 1
18

(
−
√

10 + 10
)

, z2 = 1
18

(
−
√

10 − 10
)

(33)

The four polynomials K1, K2, K3 and K4 are Schur polynomials. However,

F(z, 1/10, 1, 9/10) =
1
10

+ z +
9
10

z2 =
9

10

(
z +

1
9

)
(z + 1) (34)

is not a Schur polynomial since one of the roots is z = −1.
Example 6. Consider the following interval polynomial:

G(z, p0, p1, p2, p3) =

[
1
4

,
1
2

]
z +

[
3
4

, 1
]

z2 +

[
3
4

, 1
]

z3, (35)

that is G(z, p0, p1, p2, p3) = p0 + p1z + p2z2 + p3z3, with p0 = [0, 0], p1 ∈ [1/4, 1/2], p2 ∈ [3/4, 1] and p3 ∈ [3/4, 1].
The Kharitonov’s polynomials and respective roots are:

K1(z) =
1
4

z + z2 + z3 = z
(

1
4 + z + z2

)
; z0 = 0, z1 = − 1

2 , z3 = − 1
2

K2(z) =
1
2

z + z2 +
3
4

z3 = z
(

1
2 + z +

3
4

z2
)

; z0 = 0, z1 = 1
3

(
−2 + i

√
2
)

, z3 = 1
3

(
−2 − i

√
2
)

K3(z) =
1
4

z +
3
4

z2 + z3 = z
(

1
4 +

3
4

z + z2
)

; z0 = 0, z1 = 1
8

(
−3 + i

√
7
)

, z3 = 1
8

(
−3 − i

√
7
)

K4(z) =
1
2

z +
3
4

z2 +
3
4

z3 = z
(

1
2 +

3
4

z +
3
4

z2
)

; z0 = 0, z1 = 1
6

(
−3 + i

√
15

)
, z3 = 1

6

(
−3 − i

√
15

)
.

(36)

The four polynomials K1, K2, K3 and K4 are Schur polynomials, but

G(z, 0, 1/4, 1, 3/4) =
1
4

z + z2 +
3
4

z3 =
3
4

z(z + 1)
(

z +
1
3

)
(37)

is not a Schur polynomial since one of its roots is z = −1.
Example 7. Consider the following interval polynomial:

p(z, q) = z4 +

[
−17

8
,

17
8

]
z3 +

3
2

z2 − 1
3

. (38)

Here K1(z) = K3(z) = p(z,−17/8) and K2(z) = K4(z) = p(z, 17/8). If q = −17/8 the polynomial p(z,−17/8) =
z4 − 17/8z3 + 3/2z2 − 1/3 has four roots: z1,2 ≃ 0.786 ± ı0.596, z3 ≃ 0.924 y z4 ≃ −0.371 which are inside
unitary circle. Likewise, if q = 17/8 the polynomial p(z, 17/8) = z4 + 17/8z3 + 3/2z2 − 1/3 has the roots: z1,2 ≃
0.786 ± ı0.596, z3 ≃ −0.924 y z4 ≃ 0.371 within unitary circle. However, the polynomial p(z, 0) has the roots:
z1,2 ≃ ±ı1.303, z3,4 ≃ ±0.4433 which are not inside unitary circle, and p(z, 0) = z4 + 3/2z2 − 1/3 has two roots
z1,2 = ±i1.303 outside unitary circle.

Recent information about Hurwitz and Schur polynomials can be consulted in [11] and [12].
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6 Conclusions

In this paper, we have emphasized that there are criteria that have their version for both Hurwitz and Schur
polynomials, such as the Phase Theorem and the Hermite-Biehler Theorem. We have also presented results that are
not the exact version for both cases but that are similar or analogous, such as the Routh-Hurwitz Criterion or the
Schur-Cohn Criterion. We then illustrate that there are important differences since Kharitonov’s Theorem is valid for
Hurwitz polynomials but not for Schur polynomials. This motivates us to study what conditions must be met for a
property to be fulfilled in both cases.
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